On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations

نویسندگان

  • Guy Barles
  • Panagiotis E. Souganidis
چکیده

In this article, we study the large time behavior of solutions of first-order Hamilton-Jacobi Equations, set in a bounded domain with nonlinear Neumann boundary conditions, including the case of dynamical boundary conditions. We establish general convergence results for viscosity solutions of these Cauchy-Neumann problems by using two fairly different methods : the first one relies only on partial differential equations methods, which provides results even when the Hamiltonians are not convex, and the second one is an optimal control/dynamical system approach, named the “weak KAM approach” which requires the convexity of Hamiltonians and gives formulas for asymptotic solutions based on Aubry-Mather sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Time Behavior for Viscous and Nonviscous Hamilton-Jacobi Equations Forced by Additive Noise

We study the large-time behavior of the solutions to viscous and nonviscous Hamilton– Jacobi equations with additive noise and periodic spatial dependence. Under general structural conditions on the Hamiltonian, we show the existence of unique up to constants, global-in-time solutions, which attract any other solution.

متن کامل

A new PDE approach to the large time asymptotics of solutions of Hamilton-Jacobi equations

We introduce a new PDE approach to establishing the large time asymptotic behavior of solutions of Hamilton-Jacobi equations, which modifies and simplifies the previous ones ([5, 3]), under a refined “strict convexity” assumption on the Hamiltonians. Not only such “strict convexity” conditions generalize the corresponding requirements on the Hamiltonians in [5], but also one of the most refined...

متن کامل

Large time behavior for some nonlinear degenerate parabolic equations

We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton-Jacobi-Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, ...

متن کامل

Viscosity Solutions of Hamilton-jacobi Equations, and Asymptotics for Hamiltonian Systems

In this paper we apply the theory of viscosity solutions of Hamilton-Jacobi equations to understand the structure of certain Hamiltonian flows. In particular, we describe the asymptotic behavior of minimizing orbits of Hamiltonian flows by proving a weak KAM theorem which holds under very general conditions. Then, using Mather measures, we prove results on the uniform continuity, difference quo...

متن کامل

A PDE approach to large-time asymptotics for boundary-value problems for nonconvex Hamilton-Jacobi Equations

We investigate the large-time behavior of three types of initial-boundary value problems for Hamilton-Jacobi Equations with nonconvex Hamiltonians. We consider the Neumann or oblique boundary condition, the state constraint boundary condition and Dirichlet boundary condition. We establish general convergence results for viscosity solutions to asymptotic solutions as time goes to infinity via an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2000